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1 Introduction
Isap [13] is a family of lightweight authenticated encryption algorithms designed with
a focus on robustness against implementation attacks. Isap is of particular interest for
applications like firmware updates where robustness against power analysis and fault
attacks is crucial and code size and a small footprint in hardware matters. In this short
update, we first discuss the implications of new proofs and security arguments on Isap.
Second, we give an overview on implementations of Isap and how they compare against
other authenticated encryption schemes like AES-GCM. After that, we discuss third-party
analysis involving Ascon-p and Keccak-p[400] and its implications on Isap. Finally, we
compare Isap with current NIST standards and discuss its target applications.

2 Proofs
The mode of Isap combines various ideas and constructions from the unkeyed sponge and
the keyed sponge and duplex. The main workhorse in Isap is the keyed duplex construction,
security of which was proven by Daemen et al. [10]. This generic provable security result
concerned black-box security, where the underlying permutations are assumed to be
perfectly random and leak-free. Dobraunig and Mennink [16] considered the leakage
resilience of the duplex construction, and showed that the full-state keyed duplex is still
secure if a limited amount of leakage per duplex call takes place, provided that adversarial
state manipulation is restricted wisely. As one of the applications, Dobraunig and Mennink
demonstrated that the IsapEnc mode (including the call to IsapRk) is leakage resilient.
In a separate work, Dobraunig and Mennink [18] considered leakage resilience of the
suffix sponge, a generalization of IsapMac with the function IsapRk abstracted, in a
comparable leakage model as before (tightness of their analysis was discussed by Dobraunig
and Mennink [19]). Dobraunig and Mennink [17] united these two works and showed that
they, jointly, imply leakage resilience of the Isap mode.

Leakage resilience and misuse. For more information on the leakage resilience of the
mode of Isap, we refer to the ToSC paper about Isap v2.0 [13]. We remark that, within
this proof, the analysis of authenticity does not rely on uniqueness of the nonce. This
means that the security proof in [13] in particular implies that the Isap mode achieves
leakage-resilient authenticity under nonce-reuse. In addition, as the Isap mode follows
the encrypt-than-MAC construction, it by design also achieves security under release of
unverified plaintexts. The Isap mode also guarantees key committing security: decryption
of any ciphertext under two different keys will likely fail due to the usage of IsapRk within
IsapMac, up to collisions in the output of IsapRk, or the tag.

https://isap.iaik.tugraz.at
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Since the previous status report on Isap, there have been two new publications on the
generic security of (aspects of) the Isap mode.

1. In [20], Dobraunig and Mennink introduced and analyzed leakage resilient value
comparison, and particularly the “PVP” construction. By using this construction,
one does not perform plain tag comparison, but rather processes them through a
permutation first (as was already suggested in the original specification of Isap [14]).
They in particular presented the combined SuKS-then-PVP (StP) construction as it
would appear in Isap [20].

2. In [21], Dobraunig et al. proposed a more meaningful tamper and leakage resilience
model, i.e., one that is able to more accurately capture the leakage as it occurs in
implementations as well as faults. They showcased their model alongside the “asakey”
encryption mode that resembles the encryption mode of Isap.

Hash function. In the original specification [14, Section 2.6], we suggested that Isap can
be combined with the Ascon hash function. This Ascon hash function follows the sponge
construction, and generic security of this construction follows from the indifferentiability
of the sponge [3] up to at most 2c/2 permutation evaluations. This result, in particular,
implies that finding collisions, preimage, or second preimages for the construction of
Ascon hash is as hard as finding them for a random oracle, provided the attacker can
make at most 2c/2 evaluations. Recently, Lefevre and Mennink [43] noticed that, while
this bound is tight for collision and second preimage resistance, it is not tight for preimage
resistance, and they derived an improved bound. For the mode of Ascon hash, with
parameters (b, c, r, n) = (320, 256, 64, 256), their result implies that it achieves generic
preimage resistance up to even 2192 queries, instead of the former bound of 2128 queries
implied by the indifferentiability result.

Bounds on characteristics. Several teams have worked on proving improved bounds on
characteristics for the Ascon permutation. Erlacher et al. [27] proved bounds on the
minimum number of linearly or differentially active S-boxes for 4, 6, 8, 12 rounds using
SAT solvers. For the 12-round permutation, any characteristic has differential probability
or squared correlation ≤ 2−216; this bound is likely not tight, but provides ample security
margin. For more details, we refer to the Ascon update document. Additionally, Erlacher
[26] proved that any collision-producing differential characteristic for the Isap rekeying
phase with 1-bit rate and 1 round has probability ≤ 2−128 and covers 5 or more rounds.
The best known characteristic covers 5 such rounds (absorbing 6 bits, 3 of them active)
with 105 active S-boxes, i.e., its probability is less than 2−210 [26].

3 Implementation Security
In this section, we outline the properties of the Isap mode that make it suitable for cryp-
tographic applications that require strong protection/hardening against implementation
attacks including, but not limited to, firmware updates. Isap’s protection/hardening
against physical attacks like DPA [40], DFA [5], SFA [28], and SIFA [12] has already been
discussed in a previous update document [15]. In the context of profiling/SPA attacks,
which cannot entirely be covered by Isap’s mode-level hardening and need to be addressed
on implementation level, there exist several third-party works evaluating Keccak-p[400]-
based instances of Isap on low-end, low-noise general-purpose microcontrollers [2, 62,
38]. While such works show that immensely powerful adversaries are still able to conduct
side-channel attacks on completely unprotected implementations of Isap with high efforts,
they also show that Isap’s baseline of defense against physical attacks is generally much
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higher compared to other AEAD schemes. Moreover, adding additional hardening against
SPA is generally considered to be about an order of magnitude cheaper compared to
algorithmic hardening against DPA [2, 65, 30, 32], while SPA hardening may not even be
needed on ASIC/FPGA platforms that use a datapath width ≥ 64 bits [58, 8]. So far,
submissions to the call for protected implementations by GMU1 were primarily tested for
DPA protection using masking and hence should not be considered to resist profiling/SPA
attacks by powerful adversaries on low-noise platforms [9].

In the remainder of this section, we discuss properties of Isap that are not necessarily
covered by published protected implementations of other AEAD schemes. In the context of
DPA attacks, masked implementations of AEAD schemes typically only provide protection
against DPA-based key recovery attacks. However, a device can also be compromised by
DPA-style attacks targeting other parts of the algorithm. In the following, we discuss two
such attacks and how Isap can provide corresponding protection.

DPA-based Tag Recovery. If the tag comparison operation during authenticated decryp-
tion does not offer DPA protection, an attacker may query the decryption with related
ciphertexts and perform a DPA-style attack on the leaky tag comparison to forge corre-
sponding valid tags [2]. These tags may then allow the attacker to issue, e.g., a firmware
update using a modified firmware image without knowledge about the used encryption key.
To address this issue on algorithm-level, one needs to add masking to the tag comparison
operation, e.g., using 127 masked and operations with a multiplicative depth of 7 [2]. In
case of Isap, one can make use of the PVP construction [20, 37] to achieve the same effect
without noticeable increase of area or code-size.

DPA-based Plaintext Recovery. In case of an online single-pass AEAD scheme, an
attacker could query the decryption with a constant nonce and varying ciphertexts, thereby
forcing constant key stream blocks that get combined with varying ciphertext blocks [63].
Such an attack does not require direct extraction of cryptographic keys but recovers
plaintext messages that may carry, e.g., cryptographic keys or IP in case of firmware
updates. To address this issue on algorithm-level, one needs to employ masking whenever
key stream blocks get combined with ciphertext blocks – a consideration that is especially
relevant for so-called leveled implementations [52]. In the case of Isap, the two-pass
construction prevents this scenario by verifying the tag before decryption.

4 Implementations
In this section, we summarize implementation results for Isap. First, we provide a list
of the main updates on Isap hardware/software implementations since the publication
of the most recent Isap specification in the previous year. We then present performance
metrics of Isap on platforms that are particularly relevant for lightweight cryptography
such as microcontrollers, co-processors, FPGAs, and ASICs. On other higher-performance
platforms such as 64-bit CPUs, and when processing longer messages, Isap generally
comes with a runtime increase of around a factor 3 compared to Ascon-128 [25]. We
perform our comparisons with the existing NIST standard AES-GCM whenever possible,
or alternatively with other AES-based ciphers. Since the Isap mode is designed with a
focus on robustness against implementation attacks, and thus features protection/hardening
against physical attacks like DPA [40], DFA [5], SFA [28], and SIFA [12], we also include
comparisons with AES-based ciphers that feature algorithmic countermeasures against
attacks like DPA [40].

1https://cryptography.gmu.edu/athena/index.php?id=LWC
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4.1 Implementation Updates
The main updates on Isap hardware/software implementations since the publication of
the most recent Isap specification include the following:

• Added Isap software implementations that feature more platform-specific optimiza-
tions [35].

• Added opt_32_stp software implementation [35] that includes a leakage-resilient
tag comparison as proposed in [20, 37].

• Software implementations of Isap-A-128a optionally also support Ascon-Hash [36].

• Updated all Isap hardware implementations to LWC Hardware API 1.2.0 [36].

• Added v1_stp hardware implementation that includes a leakage-resilient tag com-
parison as proposed in [20, 37].

• Added v1_lowlatency hardware implementation that achieves higher throughput
and cuts latency in half by performing 2 permutation rounds per clock cycle [36].

• All hardware implementations of Isap-A-128a also support Ascon-Hash [36].

4.2 Software Results
In the following, we compare the performance of Isap against optimized implementations of
AES-CTR and AES-GCM on 32-bit ARM Cortex M4 microprocessors from Schwabe et
al. [54] and Mbed TLS [51]. We also include performance numbers of an optimized 2-share
implementation of AES-CTR due to a lack of published results for masked AES-GCM
implementations.

Generally speaking, as shown in Table 1, the performance of Isap-A-128a roughly
matches that of AES-GCM. To get an impression of how much overhead an algorithmic
countermeasure against DPA causes for AES-based ciphers, we can have a look at the result
for first-order masking of AES-CTR in [54, 55]. There, the runtime for processing large
messages using the 2-shares implementation is reported to be increased by more than
a factor of 5 compared to the unprotected bitsliced implementation.2 We additionally
point out that the 2-shares implementation (1) needs to precompute and store all masked
round keys to achieve this performance, (2) does not contain any device-specific fixes to
counteract potential unintended mask combinations of the microarchitecture and lacks
formal verification or a practical evaluation. Hence, more modification and runtime
overhead is likely required for this implementation to achieve first-order DPA protection
in practice. If one further desires some sort of redundancy against DFA, SFA, or SIFA for
the AES-based designs, the runtime is generally expected to be additionally increased by
at least another factor of 2.

4.3 Co-Processor Results
In the following, we present performance numbers for Ascon and Isap which can be
achieved using a 32-bit RISC-V microprocessor that features a recently proposed compact
hardware accelerator for Ascon-p [58]. The accelerator requires only 4.7 kGE, or about
half the area of dedicated hardware accelerator designs, and is easy to integrate into
low-end embedded devices like 32-bit ARM Cortex-M or RISC-V microprocessors. As can
be seen in Table 2, with Isap and Ascon’s family of modes for AEAD and hashing, we
can perform cryptographic computations with a performance of about 2 cycles/byte, or

2For our comparison with AES-CTR from Schwabe et al. [54] we use the most up-to-date (and corrected)
performance numbers from the corresponding git repository [55].
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Table 1: Software performance metrics on 32-bit ARM Cortex M4 microprocessors
when processing x message bytes and 0 bytes of associated data. We indicate protec-
tion/hardening against physical side-channel attacks (SCA) or fault injection (FI).

Scheme Type SCA FI
Cycles/Byte

64 B 1024 B long
AES-CTR bitsliced [55, 54] Enc. 7 7 165.7 117.2 101.1
AES-CTR 2-shares [55, 54] Enc. 3 7 - - ≈ 540
AES-GCM mbedtls -O3 [51] AEAD 7 7 412.6 201.2 185.9
Isap-A-128a opt_32_armv67m -O3 [51] AEAD 3 3 614.0 218.2 191.8
Isap-K-128a opt_32_armv7m -O3 [51] AEAD 3 3 2163.6 461.0 347.5

about 4 cycles/byte if protection/hardening against fault attacks and power analysis is
desired. Put differently, the hardware accelerator achieves speed-up factors of about 50 to
80, when compared to corresponding pure software implementations.

Table 2: Performance metrics of a low-end 32-bit RISC-V microprocessor with/without
1-round hardware acceleration for Ascon-p (Acc.). We indicate protection/hardening
against physical side-channel attacks (SCA) or fault injection (FI).

Scheme Implementation SCA FI
Cycles/Byte Binary Size

64 B 1536 B long [Bytes]
Ascon-128 C -O3 7 7 162.0 110.8 106.5 11 716
Ascon-128 C -Os 7 7 248.5 171.6 168.3 2 104
Ascon-128 ASM + Acc. 7 7 4.2 2.2 2.1 888
Ascon-Hash ASM + Acc. 7 7 4.6 2.6 2.5 484
Isap-A-128a ASM + Acc. 3 3 29.1 5.2 4.2 1 844

4.4 FPGA Results
In the following, we compare the performance of Isap to AES-GCM on FPGA platforms.
To allow for an easier comparison, all presented performance metrics are derived from
7-series Xilinx FPGA platforms. As can be seen in Table 3, area and performance of unpro-
tected AES-GCM implementations are roughly on par with Isap. To get an impression
of how much overhead an algorithmic countermeasure against DPA causes for AES-based
ciphers, we can have a look at the result for first-order Threshold Implementations (TI)
of AES-GCM in [48]. There, the area is reported to be increased by more than a factor
of 4 while the throughput drops by an even larger amount. If one further desires some
sort of redundancy against DFA, SFA, or SIFA, one either needs to expect an additional
doubling of the area (spatial redundancy) or a further reduction in throughput (temporal
redundancy) for the AES-based designs.

4.5 ASIC Results
In the following, we compare the performance of Isap to AES-GCM on ASIC platforms.
The presented performance metrics from Aagaard et al. [1] are derived for two different
cell libraries and two different synthesizer workflows. As can be seen in Table 4, the
performance of unprotected AES-GCM implementations is roughly on par with Isap.
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Table 3: FPGA metrics of Isap compared to the NIST standardized AES-GCM mode.
We indicate protection/hardening against physical side-channel attacks (SCA) or fault
injection (FI).

Scheme FPGA SCA FI Throughput Throughput Area
[Mbit/s] /Slices [Slices]

AES-GCM [33] Artix-7 7 7 700 1.78 393
AES-GCM [33] Artix-7 7 7 2 200 2.81 781
AES-GCM TI? [48] Virtex-7 3 7 180 0.05 3 422?

Isap-A-128a [36] Artix-7 3 3 1 110 1.78 622
Isap-K-128a [36] Artix-7 3 3 1 560 1.68 924

? Area (Slices) do not include RNG.

In terms of area, implementations of Isap are only about half the size of AES-GCM
implementations. For AES-based cipher designs we generally expect a similar increase of
runtime/area for algorithmic countermeasures against physical attacks as reported in the
previous section on FPGA results. For example, works like [49, 31] report an area increase
by about a factor of 4 for 1st-order masked AES designs. In terms of throughput, masked
AES hardware designs generally require about 5 to 8 times as many cycles given that this
many additional register stages are usually required to correctly implement a masked AES
S-box [49, 31]. The difference in throughput between unmasked/masked AES designs may
be smaller, e.g., in case of pipelined designs that process AES super boxes sequentially
and thus generally do not focus on high throughput or low latency [49, 31]. We again
expect an additional doubling of the area (spatial redundancy) or a further reduction in
throughput (temporal redundancy) to achieve additional hardening against DFA, SFA, or
SIFA for the AES-based designs.

Table 4: ASIC metrics for Isap and AES-GCM when processing x message bytes and
0 bytes of associated data as reported in [1]. We indicate protection/hardening against
physical side-channel attacks (SCA) or fault injection (FI).

Scheme Interface Cell Lib Synthesizer SCA FI Throughput Area
[Cycles/Byte] [KGE]

AES-GCM 32-bit STM65nm SDC/CE 7 7 2.1 53.0
AES-GCM 32-bit STM65nm CG/CI 7 7 2.1 27.0
AES-GCM 32-bit TSMC65nm SDC/CE 7 7 2.1 25.8
AES-GCM 32-bit TSMC65nm CG/CI 7 7 2.1 26.2
Isap-A-128a 32-bit STM65nm SDC/CE 3 3 3.2 17.2
Isap-A-128a 32-bit STM65nm CG/CI 3 3 3.2 12.9
Isap-A-128a 32-bit TSMC65nm SDC/CE 3 3 3.2 11.4
Isap-A-128a 32-bit TSMC65nm CG/CI 3 3 3.2 12.0
Isap-K-128a 16-bit STM65nm SDC/CE 3 3 2.3 19.6
Isap-K-128a 16-bit STM65nm CG/CI 3 3 2.3 14.0
Isap-K-128a 16-bit TSMC65nm SDC/CE 3 3 2.3 13.4
Isap-K-128a 16-bit TSMC65nm CG/CI 3 3 2.3 13.0

? SPC = Synopsys Design Compiler vP-2019.03, CE = Cadence Encounter v14.13
CG = Cadence Genus v18.10, CI = Cadence Innovus v18.10
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Table 5: Throughput (cycles/byte) of Isap-A-128a in hardware. “Urol” indicates the
number of permutation rounds that are executed within one clock cycle.

MAC (0+x) AEAD (x+0)
Algorithm Urol 64 B 1 536 B long 64 B 1 536 B long
Isap-A-128a 1 5.1 1.9 1.8 8.5 3.0 2.8
Isap-A-128a (StP) 1 5.1 1.9 1.8 8.5 3.0 2.8
Isap-A-128a 2 2.8 1.0 1.0 4.6 1.8 1.6
Isap-A-128a ? 4 1.6 0.7 0.6 2.7 1.1 1.1

? The performance for Urol = 4 is extrapolated from the other designs.

Finally, we present a more comprehensive overview of the performance of Isap hardware
implementations in applications that require high performance/throughput. The numbers
in Table 5 are derived from our own hardware implementations [36]. Besides that, a
recent work that compares Isap to other (protected) AEAD implementations in term of
area/latency in hardware is available at [64].

5 Overview of Third-Party Cryptanalysis
5.1 Ascon-based instances
5.1.1 Mode of Operation

Since Isap-A-128a and Isap-A-128 share the same underlying permutations, it is possible
to derive conclusions on the security of Isap-A-128a and Isap-A-128 from third-party
analysis of members of the Ascon family. In particular, the results of the authenticated
encryption mode of Table 6 can be mapped to the encryption part IsapEnc and the
results on Ascon-Hash of Table 7 are relevant for IsapMac.

Table 6: Overview of the best third-party analysis of Ascon achieved by only reducing
the number of rounds of their underlying permutation.

Type Target Rounds TimeMethod Reference
Key recovery Ascon initialization 7 / 12 2123 Cube [53]

Ascon initialization 6 / 12 240 Cube-like [46]
Ascon initialization 5 / 12 231 Diff.-linear [60]

State recovery Ascon-128a iteration 3 / 8 2117 Differential [29]
Ascon-128a iteration 2 / 8 − Sat-Solver [24]

Table 7: Overview of the best third-party analysis of Ascon-Hash.

Type Target Output size Rounds Time Method Reference
Collision Ascon-Hash 256 2 / 12 2125 Differential [66]

Ascon-Hash 256 2 / 12 2103 Differential [29]

The key recovery attacks targeting Ascon’s initialization target the mixing of the key
with the nonce by observing the behavior of the first output block for different choices
of the nonce. As Table 6 shows, third-party analyses can only exploit this behavior if
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the number of rounds are reduced from 12 to 7. If we have a look at the encryption of
Isap, the last absorbed bit of the nonce and the first keystream block are separated by
18 rounds in the case of Isap-A-128a and 24 rounds in the case of Isap-A-128. Hence,
we conclude that we have a very comfortable security margin against attacks aiming to
exploit the mixture of key and nonce via such attack vectors.

As shown in Table 6, the internal state of Ascon-128a can be recovered in a nonce-
respecting scenario if the number of rounds of the iteration between two keystream blocks
is reduced to 2. For Isap-A-128a and Isap-A-128, we use 6 and 12 rounds between
extracting two keystream blocks. In addition, the rate is reduced to 64 bits compared to
the 128 bits of Ascon-128a. Hence, there is a comfortable security margin against this
attack vector.

If we consider IsapMac, the analysis of round-reduced Ascon-Hash in Table 7 is of
interest. In particular, the analysis shown in Table 7 aims for an internal collision during
the absorption of message blocks and is hence directly applicable to round-reduced (from
12 to 2) Isap-A-128a and Isap-A-128. Still, there is a comfortable security margin.

5.1.2 Permutation

We want to emphasize that we do not require ideal properties for the underlying permuta-
tions of our designs. Non-random properties of the underlying permutations are known
and do not affect the claimed security properties of the entire algorithms. Nevertheless, for
designing algorithms based on Ascon’s permutation, it is necessary to understand its prop-
erties. Hence, we give an overview of third-party results regarding Ascon’s permutation
in Table 8.

Table 8: Overview of the third-party analysis of Ascon’s permutation. (0 = non-black-
box distinguisher)

Type Target Rounds Time Method Reference
Distinguisher Permutation 12 / 12 255 0 Zero-sum [34]

Permutation 8 / 12 246 Integral [34]
Permutation 7 / 12 265 Integral [61]
Permutation 7 / 12 260 Integral [53]
Permutation 7 / 12 234 0 Limited-Birthday [29]
Permutation 5 / 12 2109 Truncated Differential [59]
Permutation 5 / 12 280 Rectangle [29]
Permutation 3 / 12 – Subspace Trails [42]

5.2 Keccak-based instances
5.2.1 Mode of Operation

Similar to the Ascon case, we can draw conclusions on the security of Isap-K-128a
and Isap-K-128 based on the analysis of other encryption and hashing schemes that use
Keccak-p[400] as their underlying permutation.

When looking for cryptanalytic results covering the use of Keccak-p[400] for confiden-
tiality, it seems that Ketje Sr [4], a participant of CAESAR, drew the most attention. As
we can see in Table 9, at most 7 rounds of the initialization of Ketje Sr can be attacked.
Although the rate we use in Isap’s encryption with 144 bits is larger than the 32 bits
of Ketje Sr, the number of rounds separating the last absorbed bit of the nonce from
the first encryption output of 16 for Isap-K-128a and 24 for Isap-K-128 is very large.
Hence, we do not expect a threat from this attack vector.
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Table 9: Overview of third-party analysis of Ketje Sr v1, and Ketje Sr v2 achieved by
only reducing the number of rounds of their underlying permutation.

Type Target Rounds Time Method Reference
Key recovery Ketje Sr v1 7 / 13 2115 Cube [22]

Ketje Sr v1 7 / 13 291 Cube [57]
Ketje Sr v1 7 / 13 275 Cube [45]
Ketje Sr v2 7 / 13 2113 Cube [22]
Ketje Sr v2 7 / 13 299 Cube [56]
Ketje Sr v2 7 / 13 277 Cube [45]

When looking for cryptanalytic results covering the use of Keccak-p[400] in Isap’s
MAC, it seems that the results for the Keccak hash function with the Keccak-p[400]
permutation are the most relevant. While for small capacities and output sizes, preimage
and collision attacks have been shown for up to 3 and 4 rounds with practical complexity,
only 2 rounds of the hash function with a sufficiently large capacity for a meaningful security
level could be attacked with high complexity (see Table 10). This result matches with the
rates used for Isap’s MAC. Since it also targets internal collisions during the absorption of
the message, it is directly applicable to variants of Isap-K-128a and Isap-K-128 reduced
to 2 rounds. Since Isap-K-128a uses 16 rounds and Isap-K-128 uses 20 rounds for the
MAC, there is a comfortable security margin.

Table 10: Overview of third-party analysis of hashes based on Keccak-p[400].

Type Target Output size Rounds Time Method Reference
Preimage Keccak[240,160] 80 3 / 20 - Algebraic [39, 44]
Collision Keccak[240,160] 160 4 / 20 - Differential [39, 41]

Keccak[144,256] Arbitrary 2 / 20 2101 Algebraic [6]

5.2.2 Permutation

We want emphasize that we do not require ideal properties for the underlying permutations
of our designs. Non-random properties of the underlying permutations do not affect the
claimed security properties of the entire algorithms. In the following, we give an brief
overview of third-party results regarding Keccak-p[400].

Table 11: Overview of the third-party analysis of Keccak-p[400]. (0 = non-black-box
distinguisher)

Type Target Rounds Time Method Reference
Distinguisher Permutation 20 / 20 2396 0 Zero-sum [7]

Permutation 12 / 20 2396 Integral [7]
Permutation 7 / 20 284 0 Limited-Birthday [23]
Permutation 6 / 20 2278 Differential [47]
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6 Platforms and metrics in which the candidate performs
better than current NIST standards

6.1 Authenticated encryption with associated data
In Section 4, we already provide implementation comparisons of variants of Isap with
the current widely-used NIST standard AES-GCM [11, 50]. We see that Isap performs
already very well compared to unprotected hardware implementations of AES-GCM.
Once implementation countermeasures have to be factored in for AES-GCM, we can
expect Isap to perform better. In particular, the stronger the attackers one needs to defend
against, the more performance advantage one gets over using cryptographic algorithms
that solely rely on implementation-level countermeasures like higher-order masking. Since
Isap has been designed to be robust even in the presence of active and passive physical
adversaries, it is also resilient against implementation mistakes. This means that the
authenticity is preserved in case of nonce reuse or release of unverified plaintext (see
Section 2).

6.2 Hashing
We do not give a separate definition for a hash function based on Ascon-p and Keccak-p[400]
because hash functions based on these permutations are already well-specified [14, Section
2.6]. This is an advantage of permutation-based constructions that we share with SHA-3.
However, for Isap, we use much smaller permutations compared to the 1600-bit Keccak
permutation, since this leads to a smaller footprint in software and hardware. However, this
advantage of flexibility does not stop at a combination of AEAD and hashing. For instance,
IsapMac can also be a very efficient stand-alone leakage resilient message authentication
code.

7 Target applications and use cases for which the candi-
date is optimized

Isap strives to perform well in environments where implementation attacks like side-
channel and fault attacks are a threat. Especially if hardware support for round-based
implementations is available, the resilience against implementation attacks is high. In
addition, the overhead that is needed to achieve resilience against implementation attacks
is largely independent from the length of the processed data. This means that Isap is
especially suited for tasks like in-field firmware updates of lightweight devices, or the
protection of stored encrypted data like FPGA bitstreams.
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